Search any question & find its solution
Question:
Answered & Verified by Expert
The value of $\int_0^\pi\left|\sin x-\frac{2 x}{\pi}\right| \mathrm{d} x$ is
Options:
Solution:
1775 Upvotes
Verified Answer
The correct answer is:
$\frac{\pi}{2}$
$\begin{aligned} & \int_0^\pi\left|\sin x-\frac{2 x}{\pi}\right| \mathrm{d} x \\ & =\int_0^{\frac{\pi}{2}}\left(\sin x-\frac{2 x}{\pi}\right) \mathrm{d} x+\int_{\frac{\pi}{2}}^\pi\left(\frac{2 x}{\pi}-\sin x\right) \mathrm{d} x \\ & =[-\cos x]_0^{\frac{\pi}{2}}-\left[\frac{x^2}{\pi}\right]_0^{\frac{\pi}{2}}+\left[\frac{x^2}{\pi}\right]_{\frac{\pi}{2}}^\pi+[\cos x]_{\frac{\pi}{2}}^\pi \\ & =(0+1)-\left(\frac{\pi}{4}-0\right)+\left(\pi-\frac{\pi}{4}\right)+(-1-0) \\ & =\frac{\pi}{2}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.