Search any question & find its solution
Question:
Answered & Verified by Expert
The value of $\cos \left(2 \cos ^{-1} x+\sin ^{-1} x\right)$ at $x=\frac{1}{5}$ is
Options:
Solution:
1468 Upvotes
Verified Answer
The correct answer is:
$-\frac{2 \sqrt{6}}{5}$
$\begin{aligned} & \cos \left[2 \cos ^{-1} x+\sin ^{-1} x\right] \\ & =\cos \left[\cos ^{-1} x+\cos ^{-1} x+\sin ^{-1} x\right] \\ & =\cos \left[\cos ^{-1} x+\pi / 2\right]=-\sin \left[\cos ^{-1} x\right] \\ & =-\sin \left[\sin ^{-1} \sqrt{1-x^2}\right]=-\sqrt{1-x^2} \\ & =-\sqrt{1-\left(\frac{1}{5}\right)^2}=-\sqrt{\frac{24}{25}}=-\frac{2 \sqrt{6}}{5} \\ & \end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.