Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The value of $\cos \left(2 \cos ^{-1} x+\sin ^{-1} x\right)$ at $x=\frac{1}{5}$ is
MathematicsInverse Trigonometric FunctionsBITSATBITSAT 2021
Options:
  • A $-\frac{2 \sqrt{6}}{5}$
  • B $-2 \sqrt{6}$
  • C $-\frac{\sqrt{6}}{5}$
  • D None of these
Solution:
1458 Upvotes Verified Answer
The correct answer is: $-\frac{2 \sqrt{6}}{5}$
$\cos \left[2 \cos ^{-1} x+\sin ^{-1} x\right]$

$=\cos \left[\cos ^{-1} x+\cos ^{-1} x+\sin ^{-1} x\right]$

$=\cos \left[\cos ^{-1} x+\frac{\pi}{2}\right]=-\sin \left[\cos ^{-1} x\right]$

$=-\sin \left[\sin ^{-1} \sqrt{1-x^{2}}\right]=-\sqrt{1-x^{2}}$

$=-\sqrt{1-\left(\frac{1}{5}\right)^{2}}=-\sqrt{\frac{24}{25}}=-\frac{2 \sqrt{6}}{5}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.