Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The value of $\cot ^{-1}\left[\frac{\sqrt{1-\sin x}+\sqrt{1+\sin x}}{\sqrt{1-\sin x}-\sqrt{1+\sin x}}\right]$, where $x \in\left(0, \frac{\pi}{4}\right)$ is
MathematicsInverse Trigonometric FunctionsKCETKCET 2023
Options:
  • A $\frac{x}{2}-\pi$
  • B $\pi-\frac{x}{3}$
  • C $\pi-\frac{x}{2}$
  • D $\frac{x}{2}$
Solution:
2669 Upvotes Verified Answer
The correct answer is: $\pi-\frac{x}{2}$
Here,
$\cot ^{-1}\left[\frac{\sqrt{1-\sin x}+\sqrt{1+\sin x}}{\sqrt{1-\sin x}-\sqrt{1-\sin x}}\right]$
$\begin{aligned} & =\cot ^{-1}\left[\frac{(\sqrt{1-\sin x}+\sqrt{1+\sin x})^2}{(1-\sin x)-(1+\sin x)}\right] \\ & =\cot ^{-1}\left(\frac{1-\sin x+1+\sin x+2 \sqrt{1-\sin ^2 x}}{1-\sin x-1-\sin x}\right) \\ & \Rightarrow \cot ^{-1}\left(\frac{2+2 \sqrt{\cos ^2 x}}{-2 \sin x}\right) \\ & \Rightarrow \cot ^1\left(\frac{1+\cos x}{-\sin x}\right)\end{aligned}$
$\begin{gathered}\Rightarrow \cot ^{-1}\left(\frac{1+2 \cos ^2 \frac{x}{2}-1}{-2 \sin \frac{x}{2} \cos \frac{x}{2}}\right) \\ \Rightarrow \cot ^1\left(\frac{-\cos \frac{x}{2}}{\sin \frac{x}{2}}\right) \\ \Rightarrow \cot ^{-1}\left(-\cot \frac{x}{2}\right)=\cot ^{-1}\left(\cot \left(\pi-\frac{x}{2}\right)\right) \\ =\pi-\frac{x}{2}\end{gathered}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.