Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The value of $\cot \left(\sum_{n=1}^{23} \cot ^{-1}\left(1+\sum_{k=1}^n 2 k\right)\right)$ is
MathematicsInverse Trigonometric FunctionsMHT CETMHT CET 2023 (09 May Shift 1)
Options:
  • A $\frac{23}{25}$
  • B $\frac{25}{23}$
  • C $\frac{23}{24}$
  • D $\frac{24}{23}$
Solution:
2075 Upvotes Verified Answer
The correct answer is: $\frac{25}{23}$
$\begin{aligned} & \cot \left(\sum_{n=1}^{23} \cot ^{-1}\left(1+\sum_{k=1}^n 2 k\right)\right) \\ & =\cot \left(\sum_{n=1}^{23} \cot ^{-1}\left(1+2 \times \frac{n(n+1)}{2}\right)\right) \\ & =\cot \left(\sum_{n=1}^{23} \cot ^{-1}(1+n(n+1))\right)\end{aligned}$
$\begin{aligned} & =\cot \left(\sum_{n=1}^{23} \tan ^{-1}\left(\frac{1}{1+\mathrm{n}(\mathrm{n}+1)}\right)\right) \\ & =\cot \left(\sum_{\mathrm{n}=1}^{23} \tan ^{-1}\left(\frac{\mathrm{n}+1-\mathrm{n}}{1+\mathrm{n}(\mathrm{n}+1)}\right)\right) \\ & =\cot \left(\sum_{\mathrm{n}=1}^{23} \tan ^{-1}(\mathrm{n}+1)-\sum_{\mathrm{n}-1}^{23} \tan ^{-1} \mathrm{n}\right) \\ & =\cot \left[\left(\tan ^{-1}(2)+\tan ^{-1}(3)+\ldots+\tan ^{-1}(24)\right)\right. \\ & =\cot \left(\tan ^{-1}(24)-\tan ^{-1}(1)\right) \\ & =\cot \left(\tan ^{-1}\left(\frac{24-1}{1+24(1)}\right)\right) \\ & =\cot \left(\tan ^{-1}\left(\frac{23}{25}\right)\right) \\ & =\cot \left(\cot ^{-1}\left(\frac{25}{23}\right)\right) \\ & =\frac{25}{23}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.