Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The value of $\frac{d}{d x}\left[\log \left(\sin \sqrt{\frac{x^2+1}{x^2+2}}\right)\right]$ when $x=\sqrt{2}$, is
MathematicsDifferentiationTS EAMCETTS EAMCET 2022 (19 Jul Shift 2)
Options:
  • A $\frac{\sqrt{2} \cot \left(\frac{\sqrt{3}}{2}\right)}{6 \sqrt{3}}$
  • B $\frac{\sqrt{2} \tan \left(\frac{\sqrt{3}}{2}\right)}{6 \sqrt{3}}$
  • C $\frac{\sqrt{2} \cot \left(\frac{\sqrt{3}}{2}\right)}{8 \sqrt{3}}$
  • D $\frac{\sqrt{2} \tan \left(\frac{\sqrt{3}}{2}\right)}{8 \sqrt{3}}$
Solution:
2368 Upvotes Verified Answer
The correct answer is: $\frac{\sqrt{2} \cot \left(\frac{\sqrt{3}}{2}\right)}{8 \sqrt{3}}$
We have to find
$$
\begin{aligned}
& \frac{d}{d x}\left[\log \left(\sin \sqrt{\frac{x^2+1}{x^2+2}}\right)\right] \\
& \Rightarrow \frac{1}{\sin \sqrt{\frac{x^2+1}{x^2+2}}} \cdot \cos \sqrt{\frac{x^2+1}{x^2+2}} \cdot \frac{1}{2}\left(\frac{x^2+1}{x^2+2}\right)^{-\frac{1}{2}} \cdot \frac{2 x}{\left(x^2+2\right)^2} \\
&
\end{aligned}
$$
at $x=\sqrt{2}$, we get
$$
\frac{\sqrt{2} \cot \left(\frac{\sqrt{3}}{2}\right)}{8 \sqrt{3}}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.