Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The value of \( \int_{-\Pi / 4}^{\Pi / 4} \sin ^{103} x \cdot \cos ^{101} x \mathrm{~d} \mathrm{x} \) is
MathematicsDefinite IntegrationKCETKCET 2016
Options:
  • A \( \left(\frac{\Pi}{4}\right)^{103} \)
  • B \( \left(\frac{\Pi}{4}\right)^{101} \)
  • C \( 12 \)
  • D \( 00 \)
Solution:
2858 Upvotes Verified Answer
The correct answer is: \( 00 \)
Given that $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin ^{103} x \cdot \cos ^{101} x d x$
Let $f(x)=\sin ^{103} x \cos ^{101} x$
Then $f(-x)=\sin ^{103}(-x) \cos ^{101}(-x)$
$=-\sin ^{103} x \cos ^{101} x=-f(x)$
So, it is an odd function.
Since, $\int_{-a}^{a} f(x) d x=0$
Therefore $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin ^{103} x \cdot \cos ^{101} x d x=0$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.