Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The value of $\sum_{n=0}^{\infty}\left(\frac{2 i}{3}\right)^n$ is
MathematicsComplex NumberTS EAMCETTS EAMCET 2004
Options:
  • A $\frac{9+6 i}{13}$
  • B $\frac{9-6 i}{13}$
  • C $9+6 i$
  • D $9-6 i$
Solution:
2831 Upvotes Verified Answer
The correct answer is: $\frac{9+6 i}{13}$
$\begin{aligned} & \sum_{n=0}^x\left(\frac{2 i}{3}\right)^n \\ &=1+\left(\frac{2 i}{3}\right)+\left(\frac{2 i}{3}\right)^2+\left(\frac{2 i}{3}\right)^3+\ldots . \\ &=\frac{1}{1-\frac{2 i}{3}}=\frac{3}{3-2 i} \times \frac{3+2 i}{3+2 i}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.