Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The value of the integral $\int_{1}^{9} \mathrm{e}^{\sqrt{t}} \mathrm{dt}=$
MathematicsComplex NumberVITEEEVITEEE 2006
Options:
  • A $\mathrm{e}^{3}$
  • B $4 \mathrm{e}^{3}$
  • C $4\left(\mathrm{e}^{3}-\mathrm{e}\right)$
  • D $4 \mathrm{e}^{3}-2 \mathrm{e}$
Solution:
2401 Upvotes Verified Answer
The correct answer is: $4 \mathrm{e}^{3}$
Let $\mathrm{I}=\int_{1}^{9} \mathrm{e}^{\sqrt{\mathrm{t}}} \mathrm{dt}$
Put $\mathrm{t}=\mathrm{x}^{2} \Rightarrow \mathrm{dt}=2 \mathrm{x} \cdot \mathrm{dx}$
For limit : $x=1 \& x=3$
$\begin{array}{l}
I=\int_{1}^{3} e^{x} \cdot 2 x d x=2 \int_{1}^{3} e^{x} \cdot x d x \\
\Rightarrow I=2\left[\left\{x \cdot e^{x}\right\}_{1}^{3}-\int_{1}^{3} e^{x} d x\right] \\
=2\left[\left\{x e^{x}\right\}_{1}^{3}-\left\{e^{x}\right\}_{1}^{3}\right] \\
\Rightarrow I=2\left[3 e^{3}-e^{1}-e^{3}+e^{1}\right]=\left[2 e^{3}\right] \cdot 2=4 e^{3}
\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.