Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The value of $\int \frac{x^{2}+1}{x^{2}-1} d x$ is
MathematicsIndefinite IntegrationCOMEDKCOMEDK 2020
Options:
  • A $\log \left(\frac{x+1}{x-1}\right)+C$
  • B $\log \left(\frac{x-1}{x+1}\right)+C$
  • C $\log \left(x^{2}-1\right)+C$
  • D $x+\log \left(\frac{x-1}{x+1}\right)+C$
Solution:
2227 Upvotes Verified Answer
The correct answer is: $x+\log \left(\frac{x-1}{x+1}\right)+C$
Let $I=\int \frac{x^{2}+1}{x^{2}-1} d x=\int \frac{x^{2}-1+2}{x^{2}-1} d x$
$$
=\int\left(1+\frac{2}{x^{2}-1}\right) d x=x+2 \times \frac{1}{2} \log \left|\frac{x-1}{x+1}\right|+C
$$
$$
=x+\log \left|\frac{x-1}{x+1}\right|+C
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.