Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The variation of potential energy of a harmonic oscillator is as shown in the figure. Then, find the spring constant.

PhysicsOscillationsAP EAMCETAP EAMCET 2020 (17 Sep Shift 2)
Options:
  • A \(1 \times 10^2 \mathrm{Nm}^{-1}\)
  • B \(150 \mathrm{Nm}^{-1}\)
  • C \(0.667 \times 10^2 \mathrm{Nm}^{-1}\)
  • D \(3 \times 10^2 \mathrm{Nm}^{-1}\)
Solution:
2410 Upvotes Verified Answer
The correct answer is: \(150 \mathrm{Nm}^{-1}\)
According to figure, when \(y=20 \mathrm{~mm}\)
\(=2 \times 10^{-2} \mathrm{~m}\)
then \(U_{\max }=0.04 \mathrm{~J}=4 \times 10^{-2} \mathrm{~J}\)


When \(y=0\)
then \(U_{\min }=0.01 \mathrm{~J}=1 \times 10^{-2} \mathrm{~J}\)
\(\therefore\) The change in potential energy,
\(\begin{array}{ll}
& U_{\max }-U_{\min }=\frac{1}{2} K y^2 \\
\Rightarrow & 4 \times 10^{-2}-1 \times 10^{-2}=\frac{1}{2} K \times\left(2 \times 10^{-2}\right)^2 \\
\Rightarrow & 3 \times 10^{-2}=K \times 2 \times 10^{-4} \\
\Rightarrow & \quad K=\frac{3 \times 10^{-2}}{2 \times 10^{-4}}=1.5 \times 10^2=150 \mathrm{Nm}^{-1}
\end{array}\)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.