Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The vector projection of $\overline{\mathrm{AB}}$ on $\overline{\mathrm{CD}}$, where $A \equiv(2,-3,0), B \equiv(1,-4,-2), C \equiv(4,6,8)$ and $\mathrm{D} \equiv(7,0,10)$, is
MathematicsVector AlgebraMHT CETMHT CET 2023 (10 May Shift 1)
Options:
  • A $\frac{1}{49}(3 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$
  • B $\frac{1}{6}(-\hat{i}-\hat{j}-2 \hat{k})$
  • C $-\frac{1}{49}(3 \hat{i}-6 \hat{j}+2 \hat{k})$
  • D $-\frac{1}{6}(-\hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{\mathrm{k}})$
Solution:
1494 Upvotes Verified Answer
The correct answer is: $-\frac{1}{49}(3 \hat{i}-6 \hat{j}+2 \hat{k})$
$\begin{aligned}
& \overline{\mathrm{AB}}=-\hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{\mathrm{k}} \\
& \overline{\mathrm{CD}}=3 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}
\end{aligned}$
Vector projection of $\overline{\mathrm{AB}}$ on $\overline{\mathrm{CD}}$
$\begin{aligned}
& =(\overline{\mathrm{AB}} \cdot \overline{\mathrm{CD}}) \frac{\overline{\mathrm{CD}}}{|\overline{\mathrm{CD}}|^2} \\
& =(-3+6-4) \frac{(3 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})}{\left(\sqrt{3^2+(-6)^2+2^2}\right)^2} \\
& =\frac{-1}{49}(3 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.