Search any question & find its solution
Question:
Answered & Verified by Expert
The work function of caesium metal is $2.14 \mathrm{eV}$. When light of frequency $6 \times 10^{14} \mathrm{~Hz}$ is incident on the metal surface, photoemission of electrons occurs. What is the
(a) maximum kinetic energy of the emitted electrons,
(b) stopping potential, and
(c) maximum speed of the emitted photoelectrons?
(a) maximum kinetic energy of the emitted electrons,
(b) stopping potential, and
(c) maximum speed of the emitted photoelectrons?
Solution:
2233 Upvotes
Verified Answer
(a) Given, $v=6 \times 10^{14} \mathrm{~Hz}$,
$$
\begin{aligned}
\phi_0 &=2.14 \mathrm{eV} \\
&=2.14 \times 1.6 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$
By Einstein's photoelectric equation,
$$
\begin{aligned}
&\mathrm{K}_{\max }=\frac{1}{2} \mathrm{mv}^2=\mathrm{hv}-\phi_0 \\
&=6.6 \times 10^{-34} \times 6 \times 10^{14}-2.14 \times 1.6 \times 10^{-19} \\
&=3.97 \times 10^{-19}-3.42 \times 10^{-19} \\
&\cong 0.550 \times 10^{-19} \mathrm{~J} . \\
&=\frac{0.55 \times 10^{-19}}{1.6 \times 10^{-19}} \mathrm{eV}=0.343 \mathrm{eV} .
\end{aligned}
$$
(b) Stopping potential $\mathrm{V}_0=\frac{\mathrm{K}_{\max }}{\mathrm{e}} \mathrm{eV}$ $=\frac{0.343 \mathrm{eV}}{\mathrm{e}}=0.343 \mathrm{~V}$
(c) Maximum speed of the photoelectrons,
$$
\begin{aligned}
\mathrm{V}_{\max } &=\sqrt{\frac{\left(\mathrm{h} v-\phi_0\right) \times 2}{\mathrm{~m}}}(\text { from (a)) }\\
&=\sqrt{\frac{2 \times 0.548 \times 10^{-19}}{9.1 \times 10^{-31}}}\left(\because \mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}\right) \\
&=\sqrt{0.12 \times 10^{12}}=3.47 \times 10^5 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$
$$
\begin{aligned}
\phi_0 &=2.14 \mathrm{eV} \\
&=2.14 \times 1.6 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$
By Einstein's photoelectric equation,
$$
\begin{aligned}
&\mathrm{K}_{\max }=\frac{1}{2} \mathrm{mv}^2=\mathrm{hv}-\phi_0 \\
&=6.6 \times 10^{-34} \times 6 \times 10^{14}-2.14 \times 1.6 \times 10^{-19} \\
&=3.97 \times 10^{-19}-3.42 \times 10^{-19} \\
&\cong 0.550 \times 10^{-19} \mathrm{~J} . \\
&=\frac{0.55 \times 10^{-19}}{1.6 \times 10^{-19}} \mathrm{eV}=0.343 \mathrm{eV} .
\end{aligned}
$$
(b) Stopping potential $\mathrm{V}_0=\frac{\mathrm{K}_{\max }}{\mathrm{e}} \mathrm{eV}$ $=\frac{0.343 \mathrm{eV}}{\mathrm{e}}=0.343 \mathrm{~V}$
(c) Maximum speed of the photoelectrons,
$$
\begin{aligned}
\mathrm{V}_{\max } &=\sqrt{\frac{\left(\mathrm{h} v-\phi_0\right) \times 2}{\mathrm{~m}}}(\text { from (a)) }\\
&=\sqrt{\frac{2 \times 0.548 \times 10^{-19}}{9.1 \times 10^{-31}}}\left(\because \mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}\right) \\
&=\sqrt{0.12 \times 10^{12}}=3.47 \times 10^5 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.