Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Three charges $-q_1,+q_2$ and $-q_3$ are placed as shown in the figure. The $x$-component of the force on $-q_1$ is proportional to

PhysicsElectrostaticsJEE Main
Options:
  • A
    $\frac{\mathrm{q}_2}{\mathrm{~b}^2}-\frac{\mathrm{q}_3}{\mathrm{a}^2} \cos \theta$
  • B
    $\frac{\mathrm{q}_2}{\mathrm{~b}^2}+\frac{\mathrm{q}_3}{\mathrm{a}^2} \sin \theta$
  • C
    $\frac{\mathrm{q}_2}{\mathrm{~b}^2}+\frac{\mathrm{q}_3}{\mathrm{a}^2} \cos \theta$
  • D
    $\frac{\mathrm{q}_2}{\mathrm{~b}^2}-\frac{\mathrm{q}_3}{\mathrm{a}^2} \sin \theta$
Solution:
1054 Upvotes Verified Answer
The correct answer is:
$\frac{\mathrm{q}_2}{\mathrm{~b}^2}+\frac{\mathrm{q}_3}{\mathrm{a}^2} \sin \theta$
The force body diagram
$F_1=\frac{1}{4 \pi \varepsilon_0} \cdot \frac{q_1 q_3}{a^2}$ $\mathrm{F}_2=\frac{1}{4 \pi \varepsilon_0} \cdot \frac{\mathrm{q}_1 \mathrm{q}_3}{\mathrm{~b}^2}$

$\mathrm{F}_{\mathrm{X}}=\mathrm{F}_1 \sin \theta+\mathrm{F}_2=\frac{\mathrm{q}_1}{4 \pi \varepsilon_0}\left[\frac{\mathrm{q}_3}{\mathrm{a}^2} \sin \theta+\frac{\mathrm{q}_1}{\mathrm{~b}_2}\right] \Rightarrow \mathrm{F}_{\mathrm{X}} \propto\left(\frac{\mathrm{q}_3}{\mathrm{a}^2} \sin \theta+\frac{\mathrm{q}_2}{\mathrm{~b}^2}\right)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.