Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Three concentric spherical shells have radii $a, b$ and $c(a < b < c)$ and have surface charge densities $\sigma,-\sigma$ and $\sigma$ respectively. If $V_A, V_B$ and $V_C$ denote the potentials of the three shells, then for $c=a+b$, we have
PhysicsElectrostaticsNEETNEET 2009 (Screening)
Options:
  • A $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{A}} \neq \mathrm{V}_{\mathrm{B}}$
  • B $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{B}} \neq \mathrm{V}_{\mathrm{A}}$
  • C $\mathrm{V}_{\mathrm{C}} \neq \mathrm{V}_{\mathrm{B}} \neq \mathrm{V}_{\mathrm{A}}$
  • D $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{A}}$
Solution:
1259 Upvotes Verified Answer
The correct answer is: $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{A}} \neq \mathrm{V}_{\mathrm{B}}$
Here,
$$
\begin{aligned}
& \mathrm{V}_{\mathrm{A}}=\frac{1}{4 \pi \varepsilon_0} \frac{\sigma 4 \pi \mathrm{a}^2}{\mathrm{a}}-\frac{1}{4 \pi \varepsilon_0} \frac{\sigma 4 \pi \mathrm{b}^2}{\mathrm{~b}} \\
& +\frac{1}{4 \pi \varepsilon_0} \cdot \frac{\sigma 4 \pi c^2}{c} \\
& =\frac{\sigma}{\varepsilon_0}(a-b+c)=\frac{\sigma}{\varepsilon_0}(2 a) \quad(\because c=a+b) \\
&
\end{aligned}
$$






$$
\begin{aligned}
& \mathrm{V}_{\mathrm{B}}=\frac{1}{4 \pi \varepsilon_0} \cdot \frac{\sigma 4 \pi \mathrm{a}^2}{\mathrm{a}}-\frac{1}{4 \pi \varepsilon_0} \frac{\sigma 4 \pi \mathrm{b}^2}{\mathrm{~b}} \\
&+\frac{1}{4 \pi \varepsilon_0} \cdot \frac{\sigma 4 \pi \mathrm{c}^2}{\mathrm{c}}
\end{aligned}
$$


$$
\begin{aligned}
& =\frac{\sigma}{\varepsilon_0}\left(\frac{a^2}{c}-b+c\right)=\frac{\sigma}{\varepsilon_0}(2 a)(\because c=a+b) \\
& \text { and } V_C=\frac{1}{4 \pi \varepsilon_0} \cdot \frac{\sigma 4 \pi a^2}{c}-\frac{1}{4 \pi \varepsilon_0} \frac{\sigma 4 \pi b^2}{c} \\
& +\frac{1}{4 \pi \varepsilon_0} \cdot \frac{\sigma 4 \pi c^2}{c} \\
& =\frac{\sigma}{\varepsilon_0}\left(\frac{a^2}{c}-\frac{b^2}{c}+c\right)=\frac{\sigma}{\varepsilon_0}(2 a)(\because c=a+b) \\
&
\end{aligned}
$$
Hence, $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{C}} \neq \mathrm{V}_{\mathrm{B}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.