Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Three forces $\vec{P}, \vec{Q}$ and $\vec{R}$ acting along IA, IB and IC, where I is the incentre of a $\triangle A B C$, are in equilibrium. Then $\vec{P}: \vec{Q}: \vec{R}$ is
MathematicsVector AlgebraJEE MainJEE Main 2004
Options:
  • A
    $\cos \frac{A}{2}: \cos \frac{B}{2}: \cos \frac{C}{2}$
  • B
    $\sin \frac{A}{2}: \sin \frac{B}{2}: \sin \frac{C}{2}$
  • C
    $\sec \frac{A}{2}: \sec \frac{B}{2}: \sec \frac{C}{2}$
  • D
    $\operatorname{cosec} \frac{A}{2}: \operatorname{cosec} \frac{B}{2}: \operatorname{cosec} \frac{C}{2}$
Solution:
1411 Upvotes Verified Answer
The correct answer is:
$\cos \frac{A}{2}: \cos \frac{B}{2}: \cos \frac{C}{2}$
By Lami's theorem
$$
\begin{aligned}
& \vec{P}: \vec{Q}: \vec{R}=\sin \left(90^{\circ}+\frac{A}{2}\right): \sin \left(90^{\circ}+\frac{B}{2}\right): \sin \left(90^{\circ}+\frac{C}{2}\right) \\
& \Rightarrow \cos \frac{A}{2}: \cos \frac{B}{2}: \cos \frac{C}{2} .
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.