Search any question & find its solution
Question:
Answered & Verified by Expert
Three non-zero non-collinear vectors $\hat{\mathbf{a}}, \mathbf{b}$ and $\hat{\mathbf{c}}$ are such that $\hat{\mathbf{a}}+3 \hat{\mathbf{b}}$ is collinear with $\hat{\mathbf{c}}$, while $\hat{\mathbf{c}}$ is $3 \hat{\mathbf{b}}+2 \hat{\mathbf{c}}$ collinear with $\hat{\mathbf{a}}$. Then $\hat{\mathbf{a}}+3 \hat{\mathbf{b}}+2 \hat{\mathbf{c}}$ equals to
Options:
Solution:
1461 Upvotes
Verified Answer
The correct answer is:
$0$
Given, $\mathbf{a}+3 \mathbf{b}$ is collinear with c.
$\begin{array}{lll}
\therefore & a+3 b=\lambda c \\
\text {or } & a+3 b-\lambda c=0
\end{array}$
And $3 \mathbf{b}+2 \mathbf{c}$ is collinear with $\mathbf{a}$.
$\begin{aligned}
\therefore \quad 3 b+2 c & =\mu \mathrm{a} \\
3 b+2 c-\mu a & =0
\end{aligned}$
From Eqs. (i) and (ii), we get
$a+3 b-\lambda c=3 b+2 c-\mu a$
On equating $c$, we get
$\lambda=-2$
On putting $\lambda=-2$ in Eq. (i), we get
$\mathbf{a}+3 \mathbf{b}+2 \mathbf{c}=0$
$\begin{array}{lll}
\therefore & a+3 b=\lambda c \\
\text {or } & a+3 b-\lambda c=0
\end{array}$
And $3 \mathbf{b}+2 \mathbf{c}$ is collinear with $\mathbf{a}$.
$\begin{aligned}
\therefore \quad 3 b+2 c & =\mu \mathrm{a} \\
3 b+2 c-\mu a & =0
\end{aligned}$
From Eqs. (i) and (ii), we get
$a+3 b-\lambda c=3 b+2 c-\mu a$
On equating $c$, we get
$\lambda=-2$
On putting $\lambda=-2$ in Eq. (i), we get
$\mathbf{a}+3 \mathbf{b}+2 \mathbf{c}=0$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.