Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Time period of simple pendulum on earth's surface is ' $\mathrm{T}$ '. Its time period becomes ' $\mathrm{xT}$ ' when taken to a height $\mathrm{R}$ (equal to earth's radius) above the earth's surface. Then the value of ' $x$ ' will be
PhysicsOscillationsMHT CETMHT CET 2023 (12 May Shift 1)
Options:
  • A 4
  • B 2
  • C $\frac{1}{2}$
  • D $\frac{1}{4}$
Solution:
2743 Upvotes Verified Answer
The correct answer is: 2
$$
\mathrm{T}=2 \pi \sqrt{\frac{l}{\mathrm{~g}}}
$$
At a height 'h' from earth's surface,
$$
\begin{array}{ll}
& \mathrm{xT}=2 \pi \sqrt{\frac{l}{g_{\mathrm{h}}}} \\
\therefore \quad & \mathrm{x}=\sqrt{\frac{\mathrm{g}}{\mathrm{g}_{\mathrm{h}}}} \quad \ldots . .(\mathrm{i}) \\
& \text { Now, } \mathrm{g}_{\mathrm{h}}=\frac{\mathrm{GM}}{(\mathrm{R}+\mathrm{h})^2} \\
\therefore \quad & \mathrm{g}_{\mathrm{h}}=\frac{\mathrm{GM}}{4 \mathrm{R}^2} \\
\therefore \quad & \mathrm{g}_{\mathrm{h}}=\frac{\mathrm{g}}{4} \\
\therefore \quad & \text { From equations (i) and (ii), } \\
& \mathrm{x}=\sqrt{\frac{\mathrm{g}}{\mathrm{g} / 4}}=\sqrt{4}=2
\end{array}
$$
$\therefore \quad$ From equations (i) and (ii),
$$
x=\sqrt{\frac{g}{g / 4}}=\sqrt{4}=2
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.