Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Two angles of a triangle are $\frac{\pi}{6}$ and $\frac{\pi}{4}$ and the length of the included side is $(\sqrt{3}+1) \mathrm{cm}$. The area of the triangle is
MathematicsProperties of TrianglesJEE Main
Options:
  • A $\frac{\sqrt{3}-1}{2} \mathrm{~cm}^2$
  • B $\frac{\sqrt{3}}{2} \mathrm{~cm}^2$
  • C $\frac{\sqrt{3}+1}{2} \mathrm{~cm}^2$
  • D None of these
Solution:
2770 Upvotes Verified Answer
The correct answer is: $\frac{\sqrt{3}+1}{2} \mathrm{~cm}^2$
$A=\pi-\frac{\pi}{4}-\frac{\pi}{6}=180^{\circ}-45^{\circ}-30^{\circ}=105^{\circ}$
$\therefore \frac{\sqrt{3}+1}{\sin 105^{\circ}}=\frac{c}{\sin \frac{\pi}{6}}$ i.e. $\frac{C}{\sin 30^{\circ}}$
$\therefore C=\frac{1}{2} \cdot \frac{\sqrt{3}+1}{\sin \left(60^{\circ}+45^{\circ}\right)}$
$=\frac{\sqrt{3}+1}{2\left(\frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}}+\frac{1}{2} \cdot \frac{1}{\sqrt{2}}\right)}$
$=\frac{(\sqrt{3}+1)}{2 \cdot(\sqrt{3}+1)} \cdot 2 \sqrt{2}=\sqrt{2}$
$\therefore$ reqd. area $=\frac{1}{2}$ ca $\sin B$
$=\frac{1}{2} \sqrt{2}(\sqrt{3}+1) \sin \frac{\pi}{4}$
$=\frac{\sqrt{2}}{2}(\sqrt{3}+1) \cdot \frac{1}{\sqrt{2}}$
$=\frac{\sqrt{3}+1}{2} \mathrm{~cm}^2$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.