Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Two blocks ( 1 and 2) of equal mass $m$ are connected by an ideal string (see figure shown) over a frictionless pulley. The blocks are attached to the ground by springs having spring constants $\mathrm{k}_{1}$ and $\mathrm{k}_{2}$ such that $\mathrm{k}_{1}>\mathrm{k}_{2}$


Initially, both springs are unstretched. The block 1 is slowly pulled down a distance $\mathrm{x}$ and released. Just after the release the possible values of the magnitude of the acceleration of the blocks $a_{1}$ and $a_{2}$ can be-
PhysicsLaws of MotionKVPYKVPY 2012 (SB/SX)
Options:
  • A Either $\left(a_{1}=a_{2}=\frac{\left(k_{1}+k_{2}\right) x}{2 m}\right)$ or $\left(a_{1} \frac{k_{1} x}{m}-g\right.$ and $\left.a_{2}=\frac{k_{2} x}{m}+g\right)$
  • B $\left(a_{1}=a_{2} \frac{\left(k_{1}+k_{2}\right) x}{2 m}\right)$ only
  • C $\left(a_{1}=a_{2}=\frac{\left(k_{1}-k_{2}\right) x}{2 m}\right)$ only
  • D Either $\left(\mathrm{a}_{1}=\mathrm{a}_{2}=\frac{\left(\mathrm{k}_{1}-\mathrm{k}_{2}\right) \mathrm{x}}{2 \mathrm{~m}}\right)$ or $\left(\mathrm{a}_{1}=\mathrm{a}_{2}=\frac{\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \mathrm{x}}{\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{m}}-\mathrm{g}\right)$
Solution:
1616 Upvotes Verified Answer
The correct answer is: $\left(a_{1}=a_{2} \frac{\left(k_{1}+k_{2}\right) x}{2 m}\right)$ only


$\begin{array}{l}
\mathrm{T}+\mathrm{k}_{1} \mathrm{x}-\mathrm{mg}=\mathrm{ma}_{1} \\
\mathrm{k}_{2} \mathrm{x}+\mathrm{mg}-\mathrm{T}=\mathrm{ma}_{2}
\end{array}$
By constraint relation $\mathrm{a}_{1}=\mathrm{a}_{2}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.