Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Two bodies A and B radiate maximum energy with wavelength difference $4 \mu \mathrm{m}$. The absolute temperature of body $\mathrm{A}$ is 3 times that of $\mathrm{B}$. The wavelength at which body B radiates maximum energy is:
PhysicsThermal Properties of MatterMHT CETMHT CET 2022 (08 Aug Shift 2)
Options:
  • A $2 \mu m$
  • B $4 \mu m$
  • C $6 \mu m$
  • D $12 \mu m$
Solution:
2621 Upvotes Verified Answer
The correct answer is: $6 \mu m$
Concept: According to the Wiens displacement law:
$\lambda_m T=\text { Constant, }$
Given $\left(\lambda_{m B}-\lambda_{m A}\right)=4 \mu \mathrm{m} \quad---(1)$
$T_A=3 T_B \quad---(2)$
Now, using Wens law
$T_A=\lambda_{m B} T_B \quad---(3)$
$\mathrm{Eq}^{\mathrm{n}}$ (2) divided by $\mathrm{Eq}^{\mathrm{n}}$ (3)
$\begin{aligned}
& \frac{1}{\lambda_{m A}}=\frac{3}{\lambda_{m B}} \\
& \Rightarrow \frac{\lambda_{m B}}{\lambda_{m A}}=3 \\
& \Rightarrow \frac{\left(\lambda_{m B}-\lambda_{m A}\right)}{\lambda_{m A}}=2 \\
& \Rightarrow \lambda_{m A}=\frac{1}{2}\left(\lambda_{m B}-\lambda_{m A}\right)
\end{aligned}$
Now, using eq ${ }^{\mathrm{n}} 1$
$\begin{aligned}
& \lambda_{m A}=\frac{1}{2}(4 \mu \mathrm{m})=2 \mu \mathrm{m} \\
& \therefore \lambda_{m B}=4 \mu+\lambda_{m A}=6 \mu \mathrm{m}
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.