Search any question & find its solution
Question:
Answered & Verified by Expert
Two identical capacitors A and B are connected as shown in the circuit. Initially the switch 'S' is closed. Now the switch is opened and the free space between the plates of the capacitors is filled with a dielectric of dielectric constant 3. The ratio of total electrostatic energy stored in the capacitors before and after introduction of the dielectric is

Options:

Solution:
1919 Upvotes
Verified Answer
The correct answer is:
$3: 5$
Let the capacitance of each capacitor be $\mathrm{C}$.
Total electrostatic energy stared in capacitor
$$
\begin{aligned}
\mathrm{U}_1 & =\frac{1}{2} \mathrm{CE}^2+\frac{1}{2} \mathrm{CE}^2 \\
\mathrm{U}_1 & =\mathrm{CE}^2
\end{aligned}
$$
Now dielectric intorduces after pening the switch s.
Energy stored in $\mathrm{A}=\frac{1}{2} \mathrm{KCE}^2$
Let the charge stared in capacitor B initially be Q. In an open circuit, the charge will remain same.
$$
\mathrm{Q}=\mathrm{EC}
$$
Energy stored in $B=\frac{1}{2} \frac{Q^2}{K C}$
$$
=\frac{1}{2} \frac{(\mathrm{EC})^2}{\mathrm{KC}}=\frac{1}{2} \frac{\mathrm{E}^2 \mathrm{C}^2}{\mathrm{KC}}=\frac{1}{2} \frac{\mathrm{CE}^2}{\mathrm{~K}}
$$
Total energy, $\mathrm{U}_2=\frac{1}{2} \mathrm{KCE}^2+\frac{1}{2} \frac{\mathrm{CE}^2}{\mathrm{~K}}$
$$
=\frac{1}{2} \mathrm{CE}^2\left(\mathrm{~K}+\frac{1}{\mathrm{~K}}\right)
$$
Ratio, $\frac{\mathrm{U}_1}{\mathrm{U}_2}=\frac{\mathrm{CE}^2}{\frac{1}{2} \mathrm{CE}^2\left(\mathrm{~K}+\frac{1}{\mathrm{~K}}\right)}$
Here, $\mathrm{K}=3$
$$
=\frac{2}{3+\frac{1}{3}}=\frac{6}{10}=\frac{3}{5}
$$
Total electrostatic energy stared in capacitor
$$
\begin{aligned}
\mathrm{U}_1 & =\frac{1}{2} \mathrm{CE}^2+\frac{1}{2} \mathrm{CE}^2 \\
\mathrm{U}_1 & =\mathrm{CE}^2
\end{aligned}
$$
Now dielectric intorduces after pening the switch s.
Energy stored in $\mathrm{A}=\frac{1}{2} \mathrm{KCE}^2$
Let the charge stared in capacitor B initially be Q. In an open circuit, the charge will remain same.
$$
\mathrm{Q}=\mathrm{EC}
$$
Energy stored in $B=\frac{1}{2} \frac{Q^2}{K C}$
$$
=\frac{1}{2} \frac{(\mathrm{EC})^2}{\mathrm{KC}}=\frac{1}{2} \frac{\mathrm{E}^2 \mathrm{C}^2}{\mathrm{KC}}=\frac{1}{2} \frac{\mathrm{CE}^2}{\mathrm{~K}}
$$
Total energy, $\mathrm{U}_2=\frac{1}{2} \mathrm{KCE}^2+\frac{1}{2} \frac{\mathrm{CE}^2}{\mathrm{~K}}$
$$
=\frac{1}{2} \mathrm{CE}^2\left(\mathrm{~K}+\frac{1}{\mathrm{~K}}\right)
$$
Ratio, $\frac{\mathrm{U}_1}{\mathrm{U}_2}=\frac{\mathrm{CE}^2}{\frac{1}{2} \mathrm{CE}^2\left(\mathrm{~K}+\frac{1}{\mathrm{~K}}\right)}$
Here, $\mathrm{K}=3$
$$
=\frac{2}{3+\frac{1}{3}}=\frac{6}{10}=\frac{3}{5}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.