Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Two lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=z$ intersect at a point, if $k$ is equal to
MathematicsThree Dimensional GeometryVITEEEVITEEE 2014
Options:
  • A $\frac{2}{9}$
  • B $\frac{1}{2}$
  • C $\frac{9}{2}$
  • D $\frac{1}{6}$
Solution:
2137 Upvotes Verified Answer
The correct answer is: $\frac{9}{2}$
$\begin{array}{l}
\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}=r(\text { say }) \\
\Rightarrow x=2 r+1, y=3 r-1, z=4 r+1
\end{array}$
Since, the two lines intersect.
So, putting above values in second line, we get
$\begin{array}{l}
\frac{2 r+1-3}{1}=\frac{3 r-1-k}{2}=\frac{4 r+1}{1} \\
2 r-2=4 r+1
\end{array}$
$\begin{aligned} \Rightarrow & \mathrm{r}=-3 / 2 \\ & \text { Also } 3 \mathrm{r}-1-\mathrm{k}=8 \mathrm{r}+2 \\ \Rightarrow & \mathrm{k}=-5 \mathrm{r}-3=\frac{15}{2}-3=\frac{9}{2} \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.