Search any question & find its solution
Question:
Answered & Verified by Expert
Water falls from a height of $60 \mathrm{~m}$ at the rate of $15 \mathrm{~kg} / \mathrm{s}$ to operate a turbine. The losses due to frictional forces are $10 \%$ of energy. How much power is generated by the turbine? $\left(g=10 \mathrm{~m} / \mathrm{s}^2\right)$
Options:
Solution:
2631 Upvotes
Verified Answer
The correct answer is:
$8.1 \mathrm{~kW}$
Power generated by the turbine is,
$\begin{aligned}
P_{\text {gene rated }} & =P_{\text {input }} \times \frac{90}{100} \\
& =\frac{M g h}{t} \times \frac{90}{100}
\end{aligned}$
Putting the given values
$\begin{aligned}
& \frac{M}{t}=15 \mathrm{~kg} / \mathrm{s}, g=10 \mathrm{~m} / \mathrm{s}^2, h=60 \mathrm{~m} \\
& P_{\text {generated }}=(15 \times 10 \times 60) \times \frac{90}{100} \\
&=8.1 \mathrm{~kW}
\end{aligned}$
$\begin{aligned}
P_{\text {gene rated }} & =P_{\text {input }} \times \frac{90}{100} \\
& =\frac{M g h}{t} \times \frac{90}{100}
\end{aligned}$
Putting the given values
$\begin{aligned}
& \frac{M}{t}=15 \mathrm{~kg} / \mathrm{s}, g=10 \mathrm{~m} / \mathrm{s}^2, h=60 \mathrm{~m} \\
& P_{\text {generated }}=(15 \times 10 \times 60) \times \frac{90}{100} \\
&=8.1 \mathrm{~kW}
\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.