Search any question & find its solution
 Question:  
Answered & Verified by Expert
 
 $x=\frac{1-t^2}{1+t^2}$ and $y=\frac{2 a t}{1+t^2}$, then $\frac{d y}{d x}=$
  Options:
            Solution: 
    1245 Upvotes
  
Verified Answer
 
 
The correct answer is:
$\frac{a\left(t^2-1\right)}{2 t}$ 
 $x=\frac{1-t^2}{1+t^2}$ and $y=\frac{2 a t}{1+t^2}$
Differentiating with respect to $t$, we get
$\begin{aligned} & \frac{d x}{d t}=\frac{\left(1+t^2\right)(0-2 t)-\left(1-t^2\right)(0+2 t)}{\left(1+t^2\right)^2}=-\frac{4 t}{\left(1+t^2\right)^2} \\ & \text { and } \frac{d y}{d t}=\frac{\left(1+t^2\right) 2 a-2 a t(2 t)}{\left(1+t^2\right)^2}=\frac{2 a\left(1-t^2\right)}{\left(1+t^2\right)^2} \\ & \Rightarrow \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{a\left(1-t^2\right)}{-2 t} ; \therefore \frac{d y}{d x}=\frac{a\left(t^2-1\right)}{2 t} .\end{aligned}$
 Differentiating with respect to $t$, we get
$\begin{aligned} & \frac{d x}{d t}=\frac{\left(1+t^2\right)(0-2 t)-\left(1-t^2\right)(0+2 t)}{\left(1+t^2\right)^2}=-\frac{4 t}{\left(1+t^2\right)^2} \\ & \text { and } \frac{d y}{d t}=\frac{\left(1+t^2\right) 2 a-2 a t(2 t)}{\left(1+t^2\right)^2}=\frac{2 a\left(1-t^2\right)}{\left(1+t^2\right)^2} \\ & \Rightarrow \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{a\left(1-t^2\right)}{-2 t} ; \therefore \frac{d y}{d x}=\frac{a\left(t^2-1\right)}{2 t} .\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.