Search any question & find its solution
Question:
Answered & Verified by Expert
$\int \frac{d x}{(x+100) \sqrt{x+99}}=f(x)+c \Rightarrow f(x)$
Options:
Solution:
2789 Upvotes
Verified Answer
The correct answer is:
$2 \tan ^{-1}(\sqrt{x+99})$
Let
$$
\begin{aligned}
I & =\int \frac{d x}{(x+100) \sqrt{x+99}} \\
& =\int \frac{d x}{\left.(\sqrt{x+99})^2+1\right) \sqrt{x+99}}
\end{aligned}
$$
Put $\sqrt{x+99}=t \Rightarrow \frac{1}{\sqrt{x+99}} d x=2 d t$
$$
\begin{aligned}
\therefore \quad I & =\int \frac{2 d t}{t^2+1}=2 \tan ^{-1} t+c \\
& =2 \tan ^{-1} \sqrt{x+99}+c
\end{aligned}
$$
From Eqs. (i)
$$
\begin{gathered}
2 \tan ^{-1} \sqrt{x+99}+c=f(x)+c \\
f(x)=2 \tan ^{-1} \sqrt{x+99}
\end{gathered}
$$
$$
\begin{aligned}
I & =\int \frac{d x}{(x+100) \sqrt{x+99}} \\
& =\int \frac{d x}{\left.(\sqrt{x+99})^2+1\right) \sqrt{x+99}}
\end{aligned}
$$
Put $\sqrt{x+99}=t \Rightarrow \frac{1}{\sqrt{x+99}} d x=2 d t$
$$
\begin{aligned}
\therefore \quad I & =\int \frac{2 d t}{t^2+1}=2 \tan ^{-1} t+c \\
& =2 \tan ^{-1} \sqrt{x+99}+c
\end{aligned}
$$
From Eqs. (i)
$$
\begin{gathered}
2 \tan ^{-1} \sqrt{x+99}+c=f(x)+c \\
f(x)=2 \tan ^{-1} \sqrt{x+99}
\end{gathered}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.