Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{x^2}{\left(x^2-1\right)\left(x^2+1\right)} d x=$
MathematicsIndefinite IntegrationAP EAMCETAP EAMCET 2023 (18 May Shift 1)
Options:
  • A $\frac{1}{4} \log \left|\frac{x+1}{x-1}\right|-\frac{1}{2} \operatorname{Tan}^{-1} x+c$
  • B $\frac{1}{4} \log \left|\frac{x-1}{x+1}\right|+\frac{1}{2} \operatorname{Tan}^{-1} x+c$
  • C $\frac{1}{4} \log \left|\frac{x-1}{x+1}\right|-\frac{1}{2} \operatorname{Tan}^{-1} x+c$
  • D $\frac{1}{4} \log \left|\frac{x+1}{x-1}\right|+\frac{1}{2} \operatorname{Tan}^{-1} x+c$
Solution:
1944 Upvotes Verified Answer
The correct answer is: $\frac{1}{4} \log \left|\frac{x-1}{x+1}\right|+\frac{1}{2} \operatorname{Tan}^{-1} x+c$
Let $\int \frac{x^2}{\left(x^2-1\right)\left(x^2+1\right)} d x=I$
$\Rightarrow I=\frac{1}{2} \int\left(\frac{1}{x^2-1}+\frac{1}{x^2+1}\right) d x$
$\begin{aligned} & =\frac{1}{2} \cdot \frac{1}{2} \ln \left|\frac{x-1}{x+1}\right|+\frac{1}{2} \tan ^{-1} x+c \\ & =\frac{1}{4} \ln \left|\frac{x-1}{x+1}\right|+\frac{1}{2} \tan ^{-1} x+c\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.