Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{d x}{x^2 \sqrt{4+x^2}}$ is equal to
MathematicsIndefinite IntegrationTS EAMCETTS EAMCET 2012
Options:
  • A $\frac{1}{4} \sqrt{4+x^2}+C$
  • B $\frac{-1}{4} \sqrt{4+x^2}+C$
  • C $\frac{-1}{4 x} \sqrt{4+x^2}+C$
  • D $\frac{9}{4 x} \sqrt{4+x^2}+C$
Solution:
2643 Upvotes Verified Answer
The correct answer is: $\frac{-1}{4 x} \sqrt{4+x^2}+C$
$\begin{aligned} & \text { Let } I=\int \frac{d x}{x^2 \sqrt{4+x^2}} \\ &=\int \frac{d x}{x^3 \sqrt{\frac{4}{x^2}+1}} \\ & \text { Put } \quad \frac{4}{x^2}+1=t \\ & \Rightarrow \quad-\frac{8}{x^3} d x=d t \\ & \therefore \quad I=\int \frac{d t}{-8 \sqrt{t}} \\ &=-\frac{1}{8} \times \frac{\sqrt{l}}{1 / 2}+C \\ &=-\frac{1}{4} \sqrt{\frac{4}{x^2}+1}+C \\ &=-\frac{1}{4 x} \sqrt{4+x^2}+C\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.