Search any question & find its solution
Question:
Answered & Verified by Expert
$\frac{3 x^{\hat{2}}+1}{x^{2}-6 x+8}$ is equal to
Options:
Solution:
2500 Upvotes
Verified Answer
The correct answer is:
$3+\frac{49}{2(x-4)}-\frac{13}{2(x-2)}$
We have,
$\frac{3 x^{2}+1}{x^{2}-6 x+8}=3+\frac{18 x-23}{x^{2}-6 x+8}$ $=3+\frac{18 x-23}{(x-4)(x-2)}$ Aguin, let $\frac{18 x-23}{(x-4)(x-2)}=\frac{A}{x-4}+\frac{B}{x-2}$ $\Rightarrow \quad 18 x-23=A(x-2)+B(x-4)$
Put $x=4$, we get
$$
72-23=2 A \Rightarrow A=\frac{49}{2}
$$
Put $x=2$, we get
$$
\begin{gathered}
36-23=-2 B \\
\Rightarrow \quad B=\frac{-13}{2} \\
\text { So, } \frac{3 x^{2}+1}{x^{2}-6 x+8}=3+\frac{49}{2(x-4)}-\frac{13}{2(x-2)}
\end{gathered}
$$
$\frac{3 x^{2}+1}{x^{2}-6 x+8}=3+\frac{18 x-23}{x^{2}-6 x+8}$ $=3+\frac{18 x-23}{(x-4)(x-2)}$ Aguin, let $\frac{18 x-23}{(x-4)(x-2)}=\frac{A}{x-4}+\frac{B}{x-2}$ $\Rightarrow \quad 18 x-23=A(x-2)+B(x-4)$
Put $x=4$, we get
$$
72-23=2 A \Rightarrow A=\frac{49}{2}
$$
Put $x=2$, we get
$$
\begin{gathered}
36-23=-2 B \\
\Rightarrow \quad B=\frac{-13}{2} \\
\text { So, } \frac{3 x^{2}+1}{x^{2}-6 x+8}=3+\frac{49}{2(x-4)}-\frac{13}{2(x-2)}
\end{gathered}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.