Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int(x-a)\left(x^{n-1}+x^{n-2} a+\ldots . .+a^{n-1}\right) d x=$ (where $C$ is a constant of integration)
MathematicsIndefinite IntegrationMHT CETMHT CET 2022 (07 Aug Shift 2)
Options:
  • A $\frac{x^{n+1}}{n+1}-a^n x+C$
  • B $x^n-a^n+C$
  • C $\frac{x^{n+1}}{n+1}-a^n+C$
  • D $n a^{n-1}+C$
Solution:
1933 Upvotes Verified Answer
The correct answer is: $\frac{x^{n+1}}{n+1}-a^n x+C$
$\begin{aligned} & \int(x-a)\left(x^{n-1}+x^{n-2} \cdot a+\ldots \ldots+a^{n-1}\right) d x \\ & =\int\left(x^n-a^n\right) d x \\ & =\frac{x^{n+1}}{n+1}-a^n x+c\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.