Search any question & find its solution
Question:
Answered & Verified by Expert
$\left\{x \in R: \frac{14 x}{x+1}-\frac{9 x-30}{x-4} < 0\right\}$ is equal to
Options:
Solution:
2912 Upvotes
Verified Answer
The correct answer is:
$(-1,1) \cup(4,6)$
$\left\{x \in R: \frac{14 x}{x+1}-\frac{9 x-30}{x-4} < 0\right\}$
$\frac{14 x(x-4)-(9 x-30)(x+1)}{(x+1)(x-4)} < 0$
$\frac{14 x^2-56 x-\left(9 x^2-30 x+9 x-30\right)}{(x+1)(x-4)} < 0$
$\frac{\left(14 x^2-56 x-9 x^2+30 x-9 x+30\right)}{(x+1)(x-4)} < 0$
$\frac{\left(5 x^2-35 x+30\right)}{(x+1)(x-4)} < 0$
$\frac{\left(x^2-7 x+6\right)}{(x+1)(x-4)} < 0, \frac{(x-1)(x-6)}{(x+1)(x-4)} < 0$
Drawn number line,

Hence,
$x \in(-1,1) \cup(4,6)$
$\frac{14 x(x-4)-(9 x-30)(x+1)}{(x+1)(x-4)} < 0$
$\frac{14 x^2-56 x-\left(9 x^2-30 x+9 x-30\right)}{(x+1)(x-4)} < 0$
$\frac{\left(14 x^2-56 x-9 x^2+30 x-9 x+30\right)}{(x+1)(x-4)} < 0$
$\frac{\left(5 x^2-35 x+30\right)}{(x+1)(x-4)} < 0$
$\frac{\left(x^2-7 x+6\right)}{(x+1)(x-4)} < 0, \frac{(x-1)(x-6)}{(x+1)(x-4)} < 0$
Drawn number line,

Hence,
$x \in(-1,1) \cup(4,6)$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.