Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\left\{x \in R: \frac{14 x}{x+1}-\frac{9 x-30}{x-4} < 0\right\}$ is equal to
MathematicsBasic of MathematicsTS EAMCETTS EAMCET 2010
Options:
  • A $(-1,4)$
  • B $(1,4) \cup(5,7)$
  • C $(1,7)$
  • D $(-1,1) \cup(4,6)$
Solution:
2912 Upvotes Verified Answer
The correct answer is: $(-1,1) \cup(4,6)$
$\left\{x \in R: \frac{14 x}{x+1}-\frac{9 x-30}{x-4} < 0\right\}$
$\frac{14 x(x-4)-(9 x-30)(x+1)}{(x+1)(x-4)} < 0$
$\frac{14 x^2-56 x-\left(9 x^2-30 x+9 x-30\right)}{(x+1)(x-4)} < 0$
$\frac{\left(14 x^2-56 x-9 x^2+30 x-9 x+30\right)}{(x+1)(x-4)} < 0$
$\frac{\left(5 x^2-35 x+30\right)}{(x+1)(x-4)} < 0$
$\frac{\left(x^2-7 x+6\right)}{(x+1)(x-4)} < 0, \frac{(x-1)(x-6)}{(x+1)(x-4)} < 0$
Drawn number line,


Hence,
$x \in(-1,1) \cup(4,6)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.