Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$y=A e^x+B e^{2 x}+C e^{3 x}$ satisfies the differential equation
MathematicsDifferential EquationsTS EAMCETTS EAMCET 2004
Options:
  • A $y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=0$
  • B $v^{\prime \prime \prime}+6 v^{\prime \prime}+11 v^{\prime}+6 v=0$
  • C $y^{\prime \prime \prime}+6 y^{\prime \prime}-11 y^{\prime}+6 y=0$
  • D $y^{\prime \prime \prime}-6 y^{\prime \prime}-11 y^{\prime}+6 y=0$
Solution:
1410 Upvotes Verified Answer
The correct answer is: $y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=0$



Again differentiating w.r.t. $x$, we get
$$
y^{\prime \prime}=y^{\prime}+2 B e^{2 x}+6 C e^{3 x}
$$
From Eq. (ii)
$$
\begin{array}{rlrl}
B e^{2 x} & =y^{\prime}-y-2 C e^{3 x} \\
\therefore \quad & y^{\prime \prime} =y^{\prime}+2 y^{\prime}-2 y-4 C e^{3 x}+6 C e^{3 x}
\end{array}
$$

Again differentiating w.r.t. $x$, we get
$$
y^{\prime \prime \prime}=3 y^{\prime \prime}-2 y^{\prime}+6 C e^{3 x}
$$
From Eq. (iii)
$$
\begin{aligned}
& 2 C e^{3 x}=y^{\prime \prime}-3 y^{\prime}+2 y \\
& \therefore \quad y^{\prime \prime \prime}=3 y^{\prime \prime}-2 y^{\prime}+3\left(y^{\prime \prime}-3 y^{\prime}+2 y\right) \\
& \Rightarrow \quad y^{\prime \prime \prime}=6 y^{\prime \prime}-11 y^{\prime}+6 y \\
& \Rightarrow \quad y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=0 \\
&
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.