Search any question & find its solution
Question:
Answered & Verified by Expert
$z=\tan (y+a x)+\sqrt{y-a x} \Rightarrow z_{x x}-a^2 z_{y y} \quad$ is equal to
Options:
Solution:
2942 Upvotes
Verified Answer
The correct answer is:
0
$\begin{aligned} & \text { Given, } z=\tan (y+a x)+\sqrt{y-a x} \\ & \Rightarrow \quad z_x=\sec ^2(y+a x) a+\frac{1}{2 \sqrt{y-a x}}(-a) \\ & \Rightarrow \quad z_{x x}=2 \sec ^2(y+a x) \tan (y+a x) a^2 \\ & +\frac{1\left(-a^2\right)}{4(y-a x)^{3 / 2}} \\ & \text { and } \quad z_y=\sec ^2(y+a x)+\frac{1}{2 \sqrt{y-a x}} \\ & \Rightarrow \quad z_{y y}=2 \sec ^2(y+a x) \tan (y+a x) \\ & -\frac{1}{4(y-a x)^{3 / 2}} \\ & \therefore \quad z_{x x}-a^2 z_{y y}=0 \\ & \end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.