Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$z=\tan (y+a x)+\sqrt{y-a x} \Rightarrow z_{x x}-a^2 z_{y y} \quad$ is equal to
MathematicsDifferentiationTS EAMCETTS EAMCET 2009
Options:
  • A 0
  • B 1
  • C $z_x+z_y$
  • D $z_x z_y$
Solution:
2466 Upvotes Verified Answer
The correct answer is: 0
$\begin{aligned} & \text { Given, } z=\tan (y+a x)+\sqrt{y-a x} \\ & \Rightarrow \quad z_x=\sec ^2(y+a x) a+\frac{1}{2 \sqrt{y-a x}}(-a) \\ & \Rightarrow \quad z_{x x}=2 \sec ^2(y+a x) \tan (y+a x) a^2 \\ & +\frac{1\left(-a^2\right)}{4(y-a x)^{3 / 2}} \\ & \text { and } \quad z_y=\sec ^2(y+a x)+\frac{1}{2 \sqrt{y-a x}} \\ & \Rightarrow \quad z_{y y}=2 \sec ^2(y+a x) \tan (y+a x) \\ & -\frac{1}{4(y-a x)^{3 / 2}} \\ & \therefore \quad z_{x x}-a^2 z_{y y}=0 \\ & \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.