Download MARKS App - Trusted by 15,00,000+ IIT JEE & NEET aspirants! Download Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_0^1 \frac{1}{\sqrt{3+2 x-x^2}} d x=$
MathematicsDefinite IntegrationMHT CETMHT CET 2022 (10 Aug Shift 1)
Options:
  • A $\frac{\pi}{2}$
  • B $\frac{\pi}{4}$
  • C $\frac{\pi}{3}$
  • D $\frac{\pi}{6}$
Solution:
2445 Upvotes Verified Answer
The correct answer is: $\frac{\pi}{6}$
$\begin{aligned} & \int_0^1 \frac{1}{\sqrt{3+2 x-x^2}} \mathrm{~d} x=\int_0^1 \frac{\mathrm{d} x}{\sqrt{(2)^2-(x-1)^2}}=\left[\sin ^{-1}\left(\frac{x-1}{2}\right)\right]_0^1 \\ & =\sin ^{-1}(0)-\sin ^{-1}\left(\frac{-1}{2}\right)=0-\left(-\frac{\pi}{6}\right)=\frac{\pi}{6}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.