Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_{0}^{1} \tan ^{-1}\left(\frac{2 x-1}{1+x-x^{2}}\right) d x=$
MathematicsDefinite IntegrationMHT CETMHT CET 2020 (19 Oct Shift 2)
Options:
  • A 1
  • B 4
  • C 2
  • D 0
Solution:
2323 Upvotes Verified Answer
The correct answer is: 0
(A)
$\int_{0}^{1} \tan ^{-1}\left(\frac{2 x-1}{1+x-x^{2}}\right) d x$
$=\int_{0}^{1} \tan ^{-1}\left[\frac{x-(1-x)}{1+x(1-x)}\right] d x=\int_{0}^{1}\left[\tan ^{-1} x-\tan ^{-1}(1-x)\right] d x$...(1)
$=\int_{0}^{1}\left[\tan ^{-1}(1-x)-\tan ^{-1}(1-(1-x))\right] d x=\int_{0}^{1}\left[\tan ^{-1}(1-x)-\tan ^{-1}(x)\right] d x$...(2)
Adding (1) \& (2), we get
$2 I=0 \Rightarrow I=0$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.