Download MARKS App - Trusted by 15,00,000+ IIT JEE & NEET aspirants! Download Now
Search any question & find its solution
Question: Answered & Verified by Expert
$$
\int_{0}^{\frac{\pi}{2}} \frac{d x}{1+\cos x}=
$$
MathematicsDefinite IntegrationMHT CETMHT CET 2020 (14 Oct Shift 2)
Options:
  • A -2
  • B 2
  • C 1
  • D -1
Solution:
1845 Upvotes Verified Answer
The correct answer is: 1
$\begin{aligned}{\text{Let}}1 &=\int_{0}^{\frac{\pi}{2}} \frac{\mathrm{dx}}{1+\cos \mathrm{x}}=\int_{0}^{\frac{\pi}{2}} \frac{\mathrm{dx}}{2 \cos ^{2} \frac{\mathrm{x}}{2}}=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sec ^{2} \frac{\mathrm{x}}{2} \mathrm{dx} \\ &=\frac{1}{2}\left[\frac{\tan \frac{\mathrm{x}}{2}}{\left(\frac{1}{2}\right)}\right]_{0}^{\frac{\pi}{2}}=\tan \frac{\pi}{4}-\tan 0=1-0=1 \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.