Search any question & find its solution
Question:
Answered & Verified by Expert
$\int_0^{2 \pi} \frac{x \cos (x)}{1+\cos (x)} d x=$
Options:
Solution:
1030 Upvotes
Verified Answer
The correct answer is:
None of the above.
$I=\int_0^{2 \pi} \frac{x \cos x}{1+\cos x} d x$
On applying property $\int_0^a f(x) d x=\int_0^a f(a-x) d x$,
we get
$$
I=\int_0^{2 \pi} \frac{(2 \pi-x) \cos x}{1+\cos x} d x \ldots \text { (ii) }\{\because \cos (2 \pi-x)=\cos x\}
$$
On adding Eqs. (i) and (ii), we get
$$
\begin{aligned}
2 I & =2 \pi \int_0^{2 \pi} \frac{\cos x}{1+\cos x} d x \\
\Rightarrow I & =2 \pi \int_0^\pi \frac{\cos x}{1+\cos x} d x=2 \pi \int_0^\pi\left(1-\frac{1}{1+\cos x}\right) d x \\
& =2 \pi \int_0^\pi\left(1-\frac{\sec ^2 \frac{x}{2}}{2}\right) d x=2 \pi\left[x-\tan \frac{x}{2}\right]_0^\pi
\end{aligned}
$$
On applying property $\int_0^a f(x) d x=\int_0^a f(a-x) d x$,
we get
$$
I=\int_0^{2 \pi} \frac{(2 \pi-x) \cos x}{1+\cos x} d x \ldots \text { (ii) }\{\because \cos (2 \pi-x)=\cos x\}
$$
On adding Eqs. (i) and (ii), we get
$$
\begin{aligned}
2 I & =2 \pi \int_0^{2 \pi} \frac{\cos x}{1+\cos x} d x \\
\Rightarrow I & =2 \pi \int_0^\pi \frac{\cos x}{1+\cos x} d x=2 \pi \int_0^\pi\left(1-\frac{1}{1+\cos x}\right) d x \\
& =2 \pi \int_0^\pi\left(1-\frac{\sec ^2 \frac{x}{2}}{2}\right) d x=2 \pi\left[x-\tan \frac{x}{2}\right]_0^\pi
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.