Download MARKS App - Trusted by 15,00,000+ IIT JEE & NEET aspirants! Download Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_0^{\pi / 2} \sqrt{\sin \theta} \cos ^3 \theta d \theta$ is equal to
MathematicsDefinite IntegrationKCETKCET 2022
Options:
  • A $\frac{8}{23}$
  • B $\frac{7}{23}$
  • C $\frac{8}{21}$
  • D $\frac{7}{21}$
Solution:
1660 Upvotes Verified Answer
The correct answer is: $\frac{8}{21}$
Let $I=\int_0^{\pi / 2} \sqrt{\sin \theta} \cdot \cos ^3 \theta d \theta$
Let $\sin \theta=t \Rightarrow \cos \theta d \theta=d t$
When $\quad \theta=0 \Rightarrow t=0$

When
$$
\begin{aligned}
& \theta=\frac{\pi}{2} \Rightarrow 1=1 \\
& I=\int_0^1 \sqrt{t}\left(\left(-t^2\right) d t=\int_0^1\left(t^{1 / 2}-t^{5 / 2}\right) \cdot d t\right. \\
& =\left[\begin{array}{r}
3 \\
t^2 \\
3 \\
2
\end{array}\right]_0^1-\left[\begin{array}{r}
7 \\
t^2 \\
7 \\
2
\end{array}\right]_0^1=\frac{2}{3}[1-0]-\frac{2}{7}[1-0] \\
& =\frac{2}{3}-\frac{2}{7}=\frac{14-6}{21}=\frac{8}{21} \\
&
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.