Download MARKS App - Trusted by 15,00,000+ IIT JEE & NEET aspirants! Download Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_{0}^{\pi / 8} \cos ^{3} 4 \theta d \theta$ is equal to
MathematicsDefinite IntegrationCOMEDKCOMEDK 2013
Options:
  • A $\frac{5}{3}$
  • B $\frac{5}{4}$
  • C $\frac{1}{3}$
  • D $\frac{1}{6}$
Solution:
1831 Upvotes Verified Answer
The correct answer is: $\frac{1}{6}$
Let
$$
\begin{aligned}
I &=\int_{0}^{\pi / 8} \cos ^{3} 4 \theta d \theta=\int_{0}^{\pi / 8} \frac{\cos 12 \theta+3 \cos 4 \theta}{4} d \theta \\
&=\frac{1}{4}\left[\frac{\sin 12 \theta}{12}+\frac{3 \sin 4 \theta}{4}\right]_{0}^{\pi / 8}=\frac{1}{4}\left[\frac{1}{12} \sin \frac{3 \pi}{2}+\frac{3}{4} \sin \frac{\pi}{2}\right] \\
&=\frac{1}{4}\left[-\frac{1}{12}+\frac{3}{4}\right]=\frac{1}{4}\left(\frac{-1+9}{12}\right)=\frac{8}{4 \times 12}=\frac{1}{6}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.