Search any question & find its solution
Question:
Answered & Verified by Expert
$$
\text { }\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 1 & 2 \\
3 & 0 & 2
\end{array}\right]
$$
$$
\left|\begin{array}{ll}
2022 & 2024 \\
2021 & 2023
\end{array}\right|
$$
is equal to
Options:
\text { }\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 1 & 2 \\
3 & 0 & 2
\end{array}\right]
$$
$$
\left|\begin{array}{ll}
2022 & 2024 \\
2021 & 2023
\end{array}\right|
$$
is equal to
Solution:
1232 Upvotes
Verified Answer
The correct answer is:
$\left[\begin{array}{ccc}8 & 4 & 13 \\ 4 & -1 & 3 \\ 9 & 6 & 13\end{array}\right]$
Let
$$
\begin{aligned}
& A^{|B|}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 1 & 2 \\
3 & 0 & 2
\end{array}\right]_{2021}^{2022} \quad \text {, where } \\
& A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 1 & 2 \\
3 & 0 & 2
\end{array}\right], B=\left[\begin{array}{cc}
2022 & 2024 \\
2021 & 2023
\end{array}\right] \\
&
\end{aligned}
$$
Then, $|B|=\left|\begin{array}{ll}2022 & 2024 \\ 2021 & 2023\end{array}\right|=$
$=2$
$$
\therefore \quad A^{|B|}=A^2
$$
$$
A^2=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 1 & 2 \\
3 & 0 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 1 & 2 \\
3 & 0 & 2
\end{array}\right]=\left[\begin{array}{ccc}
8 & 4 & 13 \\
4 & -1 & 3 \\
9 & 6 & 13
\end{array}\right]
$$
$$
\begin{aligned}
& A^{|B|}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 1 & 2 \\
3 & 0 & 2
\end{array}\right]_{2021}^{2022} \quad \text {, where } \\
& A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 1 & 2 \\
3 & 0 & 2
\end{array}\right], B=\left[\begin{array}{cc}
2022 & 2024 \\
2021 & 2023
\end{array}\right] \\
&
\end{aligned}
$$
Then, $|B|=\left|\begin{array}{ll}2022 & 2024 \\ 2021 & 2023\end{array}\right|=$
$=2$
$$
\therefore \quad A^{|B|}=A^2
$$
$$
A^2=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 1 & 2 \\
3 & 0 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 1 & 2 \\
3 & 0 & 2
\end{array}\right]=\left[\begin{array}{ccc}
8 & 4 & 13 \\
4 & -1 & 3 \\
9 & 6 & 13
\end{array}\right]
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.