Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_{-1}^3\left(\cot ^{-1}\left(\frac{x}{x^2+1}\right)+\cot ^{-1}\left(\frac{x^2+1}{x}\right)\right) \mathrm{d} x=$
MathematicsDefinite IntegrationMHT CETMHT CET 2023 (11 May Shift 1)
Options:
  • A $\left(\frac{\pi}{4}\right)$
  • B $\pi$
  • C $\left(\frac{\pi}{2}\right)$
  • D $(2 \pi)$
Solution:
2652 Upvotes Verified Answer
The correct answer is: $(2 \pi)$
$\begin{array}{rlr}\text { Let } \mathrm{I} & =\int_{-1}^3\left(\cot ^{-1}\left(\frac{x}{x^2+1}\right)+\cot ^{-1}\left(\frac{x^2+1}{x}\right)\right) \mathrm{d} x \\ & =\int_{-1}^3\left(\tan ^{-1}\left(\frac{x^2+1}{x}\right)+\cot ^{-1}\left(\frac{x^2+1}{x}\right)\right) \mathrm{d} x \\ & =\int_{-1}^3 \frac{\pi}{2} \mathrm{~d} x \quad \ldots\left[\because \cot ^{-1}(x)=\tan ^{-1}\left(\frac{1}{x}\right)\right] \\ & =\frac{\pi}{2}[x]_{-1}^3 & \\ & =\frac{\pi}{2}(4) & \end{array}$
OBJECT END]

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.