Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_1^3\left[\tan ^{-1}\left(\frac{x}{x^2-1}\right)+\tan ^{-1}\left(\frac{x^2-1}{x}\right)\right] d x=$
MathematicsInverse Trigonometric FunctionsMHT CETMHT CET 2021 (24 Sep Shift 1)
Options:
  • A $\pi$
  • B $\frac{\pi}{4}$
  • C $\frac{\pi}{2}$
  • D $2 \pi$
Solution:
1357 Upvotes Verified Answer
The correct answer is: $\pi$
$\begin{aligned} & \text { Let } I=\int_1^3\left[\tan ^1\left(\frac{x}{x^2-1}\right)+\tan ^{-1}\left(\frac{x^2-1}{x}\right)\right] d x \\ & \int_1^3\left[\tan ^{-1}\left(\frac{x}{x^2-1}\right)+\cot ^{-1}\left(\frac{x}{x^2-1}\right)\right] d x \\ & =\int_1^3\left(\frac{\pi}{2}\right) d x=\frac{\pi}{2} \int_1^3 d x=\frac{\pi}{2}[x]_1^3=\pi\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.