Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int\left(\frac{2-\sin 2 x}{1-\cos 2 x}\right) e^{x} d x$ is equal to
MathematicsIndefinite IntegrationVITEEEVITEEE 2009
Options:
  • A $-\mathrm{e}^{x} \cot x+\mathrm{c}$
  • B $\mathrm{e}^{x} \cot x+\mathrm{c}$
  • C $2 \mathrm{e}^{x} \cot x+\mathrm{c}$
  • D $-2 \mathrm{e}^{x} \cot x+\mathrm{c}$
Solution:
1716 Upvotes Verified Answer
The correct answer is: $-\mathrm{e}^{x} \cot x+\mathrm{c}$
$$\begin{aligned}
let I &=\int\left(\frac{2-\sin 2 x}{1-\cos 2 x}\right) e^{x} d x \\
&=\int\left(\frac{2-2 \sin x \cos x}{2 \sin ^{2} x}\right) e^{x} d x \\
&=\int \operatorname{cosec}^{2} x e^{x} d x-\int \cot x e^{x} d x \\
&=-\cot x e^{x}-\int(-\cot x) e^{x} d x \\
&-\int \cot x e^{x} d x+c \\
&=-\cot x e^{x}+c
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.