Search any question & find its solution
Question:
Answered & Verified by Expert
$\int_{-\pi}^\pi \frac{x \sin x}{1+\cos ^2 x} d x=$
Options:
Solution:
1528 Upvotes
Verified Answer
The correct answer is:
$\frac{\pi^2}{2}$
Let $f(x)=\frac{x \sin x}{1+\cos ^2 x}$
$f(-x)=\frac{(-x) \sin (-x)}{1+\cos ^2 x}=\frac{x \sin x}{1+\cos ^2 x}$
$\therefore \mathrm{f}(\mathrm{x})=\mathrm{f}(-\mathrm{x}) \Rightarrow \mathrm{f}(\mathrm{x})$ is an even function
Let $I=\int_{-\pi}^\pi \frac{x \sin x}{1+\cos ^2 x} d x$
$\therefore \mathrm{I}=2 \int_0^\pi \frac{\mathrm{x} \sin \mathrm{x}}{1+\cos ^2 \mathrm{x}} \mathrm{dx}$
$=2 \int_0^\pi \frac{(\pi-x) \sin (\pi-x)}{1+[\cos (\pi-x)]^2} d x=2 \int_0^\pi \frac{(\pi-x) \sin x}{1+\cos ^2 x} d x$
Eq. (1) $+(2)$ gives,
$$
2 I=2 \pi \int_0^\pi \frac{\sin x}{1+\cos ^2 \mathrm{x}}
$$
Put $\cos x=t \Rightarrow \sin x d x=-d t$. Also when $x=0, t=1$ and when
$$
\begin{aligned}
& \mathrm{x}=\pi, \mathrm{t}=-1 \\
& \therefore 2 \mathrm{I}=2 \pi \int_1^{-1} \frac{-\mathrm{dt}}{1+\mathrm{t}^2} \\
& =2 \pi \int_{-1}^1 \frac{\mathrm{dt}}{1+\mathrm{t}^2}=4 \pi \int_0^1 \frac{\mathrm{dt}}{1+\mathrm{t}^2}=4 \pi\left[\tan ^{-1}\right]_0^2=4 \pi\left(\frac{\pi}{4}\right)=\pi^2 \\
& \therefore \mathrm{I}=\frac{\pi^2}{2}
\end{aligned}
$$
$f(-x)=\frac{(-x) \sin (-x)}{1+\cos ^2 x}=\frac{x \sin x}{1+\cos ^2 x}$
$\therefore \mathrm{f}(\mathrm{x})=\mathrm{f}(-\mathrm{x}) \Rightarrow \mathrm{f}(\mathrm{x})$ is an even function
Let $I=\int_{-\pi}^\pi \frac{x \sin x}{1+\cos ^2 x} d x$
$\therefore \mathrm{I}=2 \int_0^\pi \frac{\mathrm{x} \sin \mathrm{x}}{1+\cos ^2 \mathrm{x}} \mathrm{dx}$
$=2 \int_0^\pi \frac{(\pi-x) \sin (\pi-x)}{1+[\cos (\pi-x)]^2} d x=2 \int_0^\pi \frac{(\pi-x) \sin x}{1+\cos ^2 x} d x$
Eq. (1) $+(2)$ gives,
$$
2 I=2 \pi \int_0^\pi \frac{\sin x}{1+\cos ^2 \mathrm{x}}
$$
Put $\cos x=t \Rightarrow \sin x d x=-d t$. Also when $x=0, t=1$ and when
$$
\begin{aligned}
& \mathrm{x}=\pi, \mathrm{t}=-1 \\
& \therefore 2 \mathrm{I}=2 \pi \int_1^{-1} \frac{-\mathrm{dt}}{1+\mathrm{t}^2} \\
& =2 \pi \int_{-1}^1 \frac{\mathrm{dt}}{1+\mathrm{t}^2}=4 \pi \int_0^1 \frac{\mathrm{dt}}{1+\mathrm{t}^2}=4 \pi\left[\tan ^{-1}\right]_0^2=4 \pi\left(\frac{\pi}{4}\right)=\pi^2 \\
& \therefore \mathrm{I}=\frac{\pi^2}{2}
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.