Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{x+\sin x}{1+\cos x} d x$ is equal to
MathematicsIndefinite IntegrationAP EAMCETAP EAMCET 2021 (24 Aug Shift 2)
Options:
  • A $x \cot \left(\frac{x}{2}\right)+c$
  • B $\cot \left(\frac{x}{2}\right)+c$
  • C $\tan \left(\frac{x}{2}\right)+c$
  • D $x \tan \left(\frac{x}{2}\right)+c$
Solution:
2693 Upvotes Verified Answer
The correct answer is: $x \tan \left(\frac{x}{2}\right)+c$
Let $I=\int \frac{x+\sin x}{1+\cos x} d x$
$I=\frac{1}{2} \int\left(x \sec ^2 x / 2\right) d x+\int \tan x / 2 d x$
$\begin{aligned} I= & x \int \frac{1}{2} \sec ^2 x / 2 d x- \\ & \int\left(\frac{d x}{d x} \int \frac{1}{2} \sec ^2 x / 2 d x\right) d x+\int \tan x / 2 d x\end{aligned}$
$\Rightarrow I=x \tan x / 2-\int \tan x / 2 d x+\int \tan x / 2 d x+c$
$I=x \tan (x / 2)+c$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.