Download MARKS App - Trusted by 15,00,000+ IIT JEE & NEET aspirants! Download Now
Search any question & find its solution
Question: Answered & Verified by Expert
$$
(1+i)^{2024}+(1-i)^{2024}=
$$
MathematicsComplex NumberAP EAMCETAP EAMCET 2023 (15 May Shift 1)
Options:
  • A $-2^{1012}$
  • B $2^{1013}$
  • C $2^{2024} \mathrm{i}$
  • D $-2^{1012} \mathrm{i}$
Solution:
1516 Upvotes Verified Answer
The correct answer is: $2^{1013}$
$\begin{aligned} & \text { }(1+i)^{2024}+(1+i)^{2024}=\left[(1+i)^2\right]^{1012}+\left[(1-i)^2\right]^{1012} \\ & =\left[(2 i)^{1012}\right]+[(-2 i)]^{1012} \\ & =(2)^{1012}(i)^{1012}+(-2)^{1012}(i)^{1012} \\ & =2 \cdot 2^{1012}=2^{1013}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.