Download MARKS App - Trusted by 15,00,000+ IIT JEE & NEET aspirants! Download Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{e^{\tan ^{-1} x}}{1+x^2} d x=$
MathematicsIndefinite IntegrationJEE Main
Options:
  • A $\log \left(1+x^2\right)+c$
  • B $\log e^{\tan ^{-1} x}+c$
  • C $e^{\tan ^{-1} x}+c$
  • D $\tan ^{-1} e^{\tan ^{-1} x}+c$
Solution:
2706 Upvotes Verified Answer
The correct answer is: $e^{\tan ^{-1} x}+c$
Putting $\quad t=\tan ^{-1} x \Rightarrow d t=\frac{1}{1+x^2} d x$, we get
$\int \frac{e^{\tan ^{-1} x}}{1+x^2} d x=\int e^t d t=e^t+c=e^{\tan ^{-1} x}+c .$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.