Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\begin{aligned} & 1+x \log _e a+\frac{x^2}{2 !}\left(\log _e a\right)^2 \\ & +\frac{x^3}{3 !}\left(\log _e a\right)^3+\ldots(a>0, x \in R) \text { is equal to }\end{aligned}$
MathematicsBasic of MathematicsAP EAMCETAP EAMCET 2002
Options:
  • A $a$
  • B $a^x$
  • C $a^{\log _e x}$
  • D $x$
Solution:
2046 Upvotes Verified Answer
The correct answer is: $a^x$
We have,
$\begin{aligned}
& 1+x \log _e a+\frac{x^2}{2 !}\left(\log _e a\right)^2+\frac{x^3}{3 !}\left(\log _e a\right)^3+\ldots \\
& =1+\log _e a^x+\frac{1}{2 !}\left(\log _e a^x\right)^2+\frac{1}{3 !}\left(\log _e a^x\right)^3+\ldots \\
& =e^{\log _e a^x}=a^x
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.