Download MARKS App - Trusted by 15,00,000+ IIT JEE & NEET aspirants! Download Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\frac{1^{2}}{2}+\frac{1^{2}+2^{2}}{3}+\frac{1^{2}+2^{2}+3^{2}}{4}+\frac{1^{2}+2^{2}+3^{2}+4^{2}}{5}+\ldots \ldots \ldots \ldots$ upto 8 terms $=$
MathematicsSequences and SeriesMHT CETMHT CET 2020 (14 Oct Shift 2)
Options:
  • A 76
  • B 74
  • C 78
  • D 72
Solution:
2851 Upvotes Verified Answer
The correct answer is: 74
$\frac{1^{2}}{2}+\frac{1^{2}+2^{2}}{3}+\frac{1^{2}+2^{2}+3^{2}}{4}+$
$\begin{array}{l}\text { general } \\ \text { term }\end{array} \sum_{t=1}^{8} \frac{\sum \varepsilon^{2}}{\varepsilon}=$
$=\sum_{\varepsilon=1}^{8} \frac{\varepsilon(\varepsilon+1)(2 q+1)}{6 \varepsilon}$
$=\frac{1}{6} \sum_{\varepsilon=1}^{8} \frac{(2+1)(2 \varepsilon+1)}{(8)}$
$=\frac{1}{6} \sum_{\varepsilon=1}^{8}\left[2 \varepsilon^{2}+3 r+1\right]$
$=\frac{1}{6}\left[\frac{2 \times 8 \times 9 \times 17}{6}+\frac{3 \times 8 \times 9}{2}+8\right]$
$=74$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.